
Measuring User Responses to Driving Simulators:
A Galvanic Skin Response Based Study
Atiqul Islam

Research School of Computer Science
Australian National University

Canberra, Australia
atiqul.islam@anu.edu.au

Jinshuai Ma
Research School of Computer Science

Australian National University
Canberra, Australia

jinshuai.ma@anu.edu.au

Tom Gedeon
Research School of Computer Science

Australian National University
Canberra, Australia
tom@cs.anu.edu.au

Md Zakir Hossain
Research School of Computer Science

Australian National University
Canberra, Australia

zakir.hossain@anu.edu.au

Ying-Hsang Liu
Research School of Computer Science

Australian National University
Canberra, Australia

ying-hsang.liu@anu.edu.au

Abstract—The use of simulator technology has become popular
in providing training, investigating driving activity and perform-
ing research as it is a suitable alternative to actual field study. The
transferability of the achieved result from driving simulators to
the real world is a critical issue considering later real-world risks,
and important to the ethics of experiments. Moreover, researchers
have to trade-off between simulator sophistication and the cost
it incurs to achieve a given level of realism. This study will be
the first step towards investigating the plausibility of different
driving simulator configurations of varying verisimilitude, from
drivers’ galvanic skin response (GSR) signals. GSR is the widely
used indicator of behavioural response.

By analyzing GSR signals in a simulation environment, our
results are aimed to support or contradict the use of simple
low-level driving simulators. We investigate GSR signals of 23
participants doing virtual driving tasks in 5 different configu-
rations of simulation environments. A number of features are
extracted from the GSR signals after data preprocessing. With
a simple neural network classifier, the prediction accuracy of
different simulator configurations reaches up to 90% during
driving. Our results suggest that participants are more engaged
when realistic controls are used in normal driving, and are less
affected by visible context during driving in emergency situations.
The implications for future research are that for emergency
situations realistic controls are important and research can be
conducted with simple simulators in lab settings, whereas for
normal driving the research should be conducted with full context
in a real driving setting.

Index Terms—Driving simulator, verisimilitude, physiological
signal, galvanic skin response, classification

I. INTRODUCTION

Driving simulators have been used for research and training
for the past few decades [1], and the complexity of driving
simulators have been increasing day by day. Driving simulators
differ in fidelity, quality and cost. Some driving simulators in
research institutes are built upon real cars and so could have
very high levels of verisimilitude, for example the advanced
driving simulator used in [2], while others may only consist
of simplified components of a car and displays.

Driving simulators have been widely used for investigating
drivers’ psychological response. One very common type of
research is the investigation of human factors [3]. Driver’s
emotion recognition while driving is important for designing
in-vehicle instrument to ensure a safe driving [4]. Usually this
kind of research aims at observing and analyzing a driver’s be-
haviour and mental states from the perspectives of psychology,
biomedical science and neuroscience. For example authors
in [5] investigated the recognition of emotional state of driver
through speech interaction between driver and car. Authors
in [6] investigated drivers’ psychology under the influence of
different ice-snow road condition based on a simulator study.
Results showed that under such condition drivers’ physiolog-
ical load increases and creates an unfavourable driving situ-
ation. Another driving simulator based study showed drivers’
risk perception while following another vehicle [7]. This kind
of research uses simple driving simulators as the focus is
mainly on drivers’ physiological signals, and implicitly con-
sidering that the details of the car has no significant influence
on the results. However, the experiment environment is still
important as human behaviour and mental states could be very
sensitive to the context and any differences of environment [8],
[9].

This leads to a concern whether simple driving simulators
can really simulate real driving well and provide drivers with a
comparable environment, in which the drivers can have similar
physiological behavioural responses as they would in the real
world, while driving a real car. Even if this is considered to be
true, the question would still remain of the relative importance
between the realism of the controls or the amount of visible
context in such simple simulator setups.

As human factors research tools, driving simulators must
possess some suitable level of verisimilitude. Much research
has been completed to validate the performance of high-
level driving simulators. Some result shows that for a high-
level driving simulator which is built upon real cars, the
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human’s physiological signals are very close to real driving
environments [3], [10], [11]. However, only a few studies have
focused on the real world verisimilitude of simple driving
simulators, yet many studies like [12], [13] are based on
experiments that use simple driving simulators. Thus, it is
important to investigate the user response to simple driving
simulators in human physiological studies.

In our study, we use five different configurations of simple
low-level driving simulators using two different types of
controls (keyboard and a force feedback driving set) and three
types of display settings (single monitor, triple monitor for
large context display and a virtual reality headset). Users’
galvanic skin response (GSR) [14] data have been taken during
driving in these five different configurations as the GSR signal
is the indication of cognitive arousal [15]. We suggest that the
verisimilitude of a driving simulator can be measured by the
relative reactions of participants in the different settings. This
allows us to correlate the effects produced from the users’
response to a driving simulator as a result of variations of
the driving environment (traffic conditions, number of vehicle,
pedestrians and other objects) to the different settings.

The remainder of the paper is organized as follows: Sec-
tion II gives an account of previous work. Section III discusses
the detail of our experimental procedure including the appara-
tus, methods and analysis of this study. Our new and exciting
results are described in Section IV. Finally, Section V provides
our conclusions.

II. PREVIOUS WORK

Driving simulators are currently undergoing enormous
change with increasing demands for advanced and sophisti-
cated simulators, and the applications range from entertain-
ment to research and advanced training. Based on fidelity,
driving simulators can be classified as low-level and high-level.
A low-level driving simulator can be illustrated by two parts
of this equipment, the driving tool and the visual display. In
practical application, low level driving simulators are widely
use, especially by the human factors research community as
their major focus is human cognitive states. There are many
real-world research examples using simple driving simulators
to investigate drivers’ physiological characteristics [6], [7],
[16]–[18]. Most of the studies of this kind assume that the
driver’s physiological signals in the simulation environment
are similar to what they would be in the real world driving
environment.

Several studies have focused on high-fidelity simulator
validation and comparison with the real world demonstrat-
ing similar order results to the simulator results [19], [20].
On the other hand several other studies have focused on
validating low-level simulators with relatively higher level
ones [21], [22]. Low-level and higher-level simulators are
again compared to determine drivers’ distraction when using
in-vehicle interactive systems [23], [24]. Results suggest that
the effects are in similar ranges for both types of simulator.
This finding supports the use of low-level simulator in human
factor research.

Literature shows the effect of the control has a vital impact
on the driving simulator. Studies have shown the influence
of steering complexity on simulator realism by subjective
assessment. The authors of the paper [25] found strong relation
between the steering controller feel and simulator verisimili-
tude. This result can be useful in selecting steering complexity
for better steering feel in simulators. Two different types of
steering wheels are compared on a fixed base driving simulator
in [26]. The importance of steering haptic feedback on driving
performance is investigated by a tractor-driving simulator
in [27]. The results show that with no steering force feedback,
subjects’ controllability decreases and it increases with the
increase of the steering torque up to a certain optimal level.
A factor that has not been reported in low-level simulators is
the effect of controls and display in the same simulator.

Field of view in driving simulators also effects simula-
tor fidelity [28]. Driving simulators with high-level display
systems deliver some benefits [29]. This is the reason that
many simulation studies have used wider filed of view dis-
play. However, simulator discomfort remains a concern with
high fidelity displays [30]. Moreover, different level of field
of view with respect to driving simulator realism was not
studied adequately. As the visible context is believed to be
an important factor for immersion many studies in virtual
reality field investigated the connection between immersion,
coherence and physiological signals including GSR [31], [32].
The author in [33] investigated immersive and non-immersive
virtual reality (VR) environment using head mounted display
(HMD) and laptop computer display respectively but not for
driving simulation . They found no significant effect of virtual
environment platform on other variables such as sense of
presence, task performance and immersion. However, their
findings showed that participants’ experienced higher simu-
lator sickness with HMD. This study could be an important
evidence for supporting or not supporting particular user
response to driving simulator using VR headset as a display.

The combined effect of control and display was not ade-
quately studied in the literature. To compare among different
controls and visual contexts in different driving situations
allows us to determine their relative importance and if there
are compensatory influences (such as large field of view
compensating for low quality controls, and so on). Galvanic
skin responses of a human body serves as a basis for many
cognitive, human factor and emotion research [34]–[37]. GSR
signal is also used for drivers’ cognitive workload detection in
driving simulators [38], [39]. Several on-road studies also used
GSR signals for driving performance and cognitive workload
determination [40], [41]. Many studies compared GSR signals
during simulator driving and real-life on-road driving [42].
Based on the literature it is evident that GSR signals could also
be useful in determining the level of engagement, stress and
cognitive workload in driving simulators. However, using GSR
signals for measuring the user response to different driving
simulators is not adequately covered in the literature. This
motivates us to investigate GSR signal in different simulator
environment. Moreover, which part of the simulator setup has
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the most effect on different driving scenarios should also be
investigated. This paper will focus on investigating driving
simulator verisimilitude based on participants’ GSR signals
for driving in different simulator configurations, driving events
and driving scenarios.

III. EXPERIMENT

This study was designed to investigate user responses on
different driving simulator settings, driving events and situa-
tions based on user GSR signal. An experiment was conducted
on simple driving simulator with different configurations.

A. Participants

Twenty-three university students (9 male, 14 female) par-
ticipated in the experiment with an average age distribution
of 20.9 ±2.3 (mean ±standard deviation) years. Participants
gained course credits for participating in the experiment, but
their participation was voluntary - there were a large range of
other experiments they could have chosen. All the participants
had normal or corrected to normal vision. We only took
voluntary participation in the experiment, as the voluntary
participants provide highly reliable outcomes compared to
paid ones, when they complete experiment tasks [43]. All
participants completed the experiment. Before participation,
they signed an informed consent form. The experiment was
approved by the University’s Human Research Ethics Com-
mittee.

B. Apparatus

1) Driving simulator: The simulator hardware consisted of
a computer, displays and controllers. The computer was a
Windows 10 based machine with Intel Core i7 3770 CPU,
Nvidia GTX 1060 6 GB graphic card and 16 GB RAM. A
commercial driving software City Car Driving (CCD) was
used, which was designed for new drivers or learners to
practice driving skills [44]. CCD provides a number of flexible
options to simulate various driving environment like different
gear styles, traffic density etc. We set the gear style to
automatic and thus only two gears were used (forward and
backward) as our focus was GSR signals in different settings
and this removes the cognitive load of changing gears often
as would be the case with a manual gear setting. To trigger
emergency situations, the traffic level was set to 70%; and the
emergency level was set to “very often” for all driving trials.
Even on this setting, emergency situations were a relatively
low proportion of the driving time. Two driving situation
classes were labelled, which were normal driving situations
and emergency driving situations.

The normal driving situation was when participants drove
the virtual vehicle forward normally, stopped for traffic and
so on. Emergency situations were when an accident happened
which included hitting or almost hitting another car, a pedes-
trian or an object. According to the feedback and results
from pilot experiments, our configurations were optimal so
that it balances normal situations and emergencies, and the
participants were able to experience these stimulations without

Fig. 1: Configurations of the simulator

TABLE I: Configurations of the simulator

Task
No.

Configuration
Name Controller Display

Task 1 KS Keyboard Single Monitor
Task 2 KT Keyboard Triple Monitor
Task 3 DS Driving Set Single Monitor
Task 4 DT Driving Set Triple Monitor
Task 5 DH Driving Set Headset (Virtual Reality)

getting either bored or annoyed during the 45 minutes long
experiment.

We used low-level driving simulator in our study as our
focus was to support or contradict the use of simple low-level
driving simulators in real world research. Then we tried to
increase the amount of realism by adding more display units
and realistic controls but still keeping the simulator in low-
level form. Usually the low-level simple driving simulator
consists of the display and controller. In this experiment,
to create several different configurations of simple driving
simulator with different level of realism, the displays were
divided into three groups. The first was a single 24 inch
computer monitor with standard full high definition (FHD)
resolution. The second was a triple monitor set, each with the
same specifications. The third was a Fove virtual reality (VR)
headset with a standard quad high definition (QHD) resolution.

The controllers were divided into two groups. The first was
a standard computer keyboard. The second was a Logitech
driving set consisting of a driving steering wheel, a pedal set
and a shifter. Using different combination of displays and
controllers, a total of 5 configurations had been designed
for the simulator, as shown in Figure 1 and Table I. We
interchangeably used “tasks” and “configurations” to indicate
driving in different simulator configuration setups.

2) Sensors: Participants’ GSR signals were collected
by the E4 wristband device produced by Empatica
(https://www.empatica.com/) which is capable of collecting
real-time GSR signal at a sampling rate of 4 Hz, along with
various other data. This device is getting more and more
popularity these days among human factor researcher. Many
studies have used Empatica device with well accepted accura-
cies [45]–[47]. We used the Fove (https://www.getfove.com/)
virtual reality (VR) headset with integrated eye tracker, which
is designed for gaming and eye feature research in VR
environments.

C. Experiment Procedure

Participants were briefed about the experiment and asked
to read the information sheet, after that they completed the
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Fig. 2: Overview of the simulator setup

ANU approved consent form. After the initialization and
the calibration of sensors, the participants were asked to
practice for 3 minutes to get used to and comfortable with
the experiment environment and devices. Participant could
move the non-rotating chair forward or backward to adjust
their best suited position. They were asked to minimize any
unnecessary movement except the natural movement for com-
pleting the task. So that the movement related artefact could
be minimized. After the practice session on the simulator,
the participants performed the 5 driving tasks using different
simulator configurations.

At the beginning of each task, the simulator setup was
switched to the appropriate one, and using the appropriate
devices. To make it convenient to switch between different
configurations, the monitors were put together, and the driving
set and keyboard were put on the same table as shown in
Figure 2. Between consecutive tasks in the experiment, there is
a 2 minutes break in which the participants relax. At the end,
each participant was asked to fill in a questionnaire, which
included basic demographic questions and some questions
about participants’ driving experience and feedback about the
simulator setups.

Participants’ familiarity with the devices may potentially
affect their GSR signals. For example, a participant may
perform better in the last task than the first one because the
user gradually gets used to the devices and becomes more
skilful in operating them. To minimise the potential learning
effect of the assigned tasks, the five tasks in each experiment
were conducted in an order balanced fashion. We followed a
Latin square method for this [48], [49].

D. Data Analysis

The analysis of the sensor data was performed in three
steps: signal pre-processing, feature extraction, and analysis.
Pre-processing involved signal labelling, signal filtering to
remove noise artefacts and normalization to reduce subject
dependency. Feature extraction involved segmentation and

TABLE II: Driving events and situations in each experiment
session

Events Situations

Hit a pedestrian

Energency

Almost hit a pedestrian
Hit an object
Almosyt hit an object
Hit a car
Almost hit a car

Normal driving
NormalStopping

feature calculation. The analysis used in this study involved
simple statistical methods and neural network classification.

A manual labelling program was developed and imple-
mented to label eight different driving events during each ex-
periment session. The events are also divided in two situation
categories as shown in the Table II. Each label will be logged
with a unique millisecond timestamp. The program will also
record the beginning and end of each driving task. A 20 point
median filter was used for the signals, which removed outliers
and smoothed the signal but retained its original shape [50].

GSR signals have variable ranges of baseline values de-
pending on different subjects, which means the mean value of
a signal may have differences between different individuals.
So, normalization was done on the data over the whole
period of a particular participant to scale different participants’
signals into the same range considering each participant sep-
arately [51]. We used maximum value normalization. In this
normalization, each value of a participant’s GSR signal for
one complete experiment is divided by the maximum value
of that particular participant’s GSR signal [52], [53]. Thus,
signals for each participant varied between 0 and 1 overall,
and not for each simulator configuration.

Afterward, the data was first segmented based on each task
which was actually the simulator configuration (see Figure 1
and Table I), for example, configuration DT is one segment
and similarly other configurations. In each task, the data was
segmented again based on the events as shown in Table II. Dur-
ing each driving tasks, a number of driving events are labelled.
These labels are used for segmentation. Each label contains a
unique timestamp and 5 seconds of data segment around the
timestamp is extracted which spans from one second before
the unique timestamp of the label to four seconds after the
timestamp. A number of temporal and spectral features were
then calculated from each segment. In time domain, maximum,
minimum, mean, median value, standard deviation, variance,
number of zero crossings, root mean square were used as
features. Fast Fourier Transform (FFT) [54] was applied on
the original data to convert it to the frequency domain signal.
The skewness and kurtosis are applied on frequency domain
signals. We refer the reader to [55] for the equations of the
features.

To investigate the differences in users’ GSR signals to
different driving environments in our study, an analysis of
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1 

Driving Simulation Data Analysis

Relationships among task, event and physiological signals

To determine whether there are differences in physiological signals for different situations, 

tasks and events in the study, an analysis of variance (ANOVA) was conducted, followed by 

TukeyHSD ad hoc comparisons, if needed. Overall, the results show that there are 

significant differences in GSR for tasks.

We find that there was no significant relationship between the mean of GSR and the 

situation (F(1, 591) = 1.49, p = .22, p > .05), and between the mean of GSR and the event 

(F(7, 585) = 1.24, p = .28, p > .05). However, there are extremely significant relationships 

between the mean of GSR and the task (F(4, 588) = 63.85, p = <2e 16, p < .001). TukeyHSD 

results show that there are significant differences between the pairs of 3 1, 4 1, 5 1, 3 2, 4 2, 

2, 4 3, 5 3 and 5 4. That is, there is no difference between task 1 (single monitor + 

keyboard) and task 2 (triple monitor + keyboard), but there are significant differences in the 

mean of GSR between task 1 and other tasks (tasks 3, 4 and 5), and between task 2 and 

other tasks (tasks 3, 4 and 5). It is worth mentioning that there are significant differences in 

the mean of GSR for all the three tasks with driving set (4 3, 5 3 and 5 4). In general, there is 

significant difference in the mean of GSR between the keyboard and the driving set settings. 

Within the driving set setting, there exist significant differences in the mean of GSR for 

different devices, i.e., single monitor, triple monitor and VR headset.

 

Relationships among user characteristics and physiological signals

To determine whether there is any association between the user characteristics and the GSR 

signals, an odds ratio analysis was conducted. Table 1 is a summary of the results. Overall, 

Mean GSR

T
as

k
s

Fig. 3: Relationship between the mean GSR and task (Task 1
= single monitor + keyboard (KS); Task 2 = triple monitor +
keyboard (KT); Task 3 = single monitor + driving set (DS);
Task 4 = triple monitor + driving set (DT); and Task 5 =
driving set + headset virtual reality (DH)).

variance (ANOVA) and TukeyHSD ad-hoc comparisons were
applied on the mean absolute value of GSR signals under
different simulator configurations [56]. The GSR signals under
normal driving and emergency driving situations were ana-
lyzed independently. However, the method can only detect
significant differences without deciding where and what the
differences are [57]. To further investigate the differences, a
neural network was applied on the selected features to perform
classification on the 5 simulator configurations respectively.
Artificial neural networks have been widely applied to classify
physiological data for emotion classification such as fake and
genuine smile detection [50] and has been shown to have
good performance. Classification result shows the accuracy
in classifying different configurations of the simulator based
on GSR signals. The network architecture included 10 hidden
neurons, tan-sigmoid activation function and mean squared
normalized error performance function(mse). The input were
the selected GSR features and there were two output classes,
the normal situation and emergency situation. A leave-one-out
approach was applied to validate the performance, which used
each subject’s data as testing set while others as training set.
Therefore the validation ran a total of 23 loops, and the result
was the average of each loop. The leave-one-out validation
process was repeated for 10 times and we average the results
to get the final result.

IV. RESULTS AND DISCUSSION

Firstly, significance differences were tested between mean
GSR and a condition (situation, event, or task) using an
analysis of variance (ANOVA) technique. From the analysis,
we did not find any significant relationship between the mean
GSR and the situation (F(1,591)= 1.49, p = .22, p > .05), as

TABLE III: Relationship between user characteristics and
mean GSR at 95% confidence interval

User
Characteristics

Cut Point
(Mean)

Odds
Ratio

Log
Odds

Std
Error

t-
Value

Signi-
ficant?

Gender 0.04 1.71 0.54 0.18 2.92 Yes
Wear glasses 0.04 0.59 -0.53 0.20 -2.73 Yes
Driving license 0.04 0.45 -0.80 0.29 -2.72 Yes
Driving simulator 0.04 0.48 -0.74 0.31 -2.39 Yes
Devices affecting
performance 0.04 0.69 -0.37 0.18 -2.07 Yes

See through VR
headset clearly 0.04 1.66 0.51 0.18 2.88 Yes

well as between the mean GSR and the event (F(7,585) = 1.24,
p = .28, p > .05). However, extremely significant relationships
were observed between the mean GSR and the task (i.e. each
configuration) (F(4,588) = 63.85, p = <2e-16, p < .001). The
values of mean GSR (considering each task separately) are
shown in Figure 3.

Secondly, TukeyHSD was applied to measure the significant
differences between task pairs. The results show that there are
significant differences between the task pairs of 3-1, 4-1, 5-
1, 3-2, 4-2, 5-2, 4-3, 5-3 and 5-4. It illustrates that although
there are significant differences between task 1 and other tasks
(tasks 3, 4 and 5), as well as between task 2 and other tasks
(tasks 3, 4 and 5), but there is no significant difference between
task 1 (single monitor + keyboard) and task 2 (triple monitor
+ keyboard). It is not surprising as people’s focus narrows
during sudden stress. So it is plausible that it matters little
if the participant is looking at a single screen or a triple
screen display. The result is also evident from a study where
significant differences were not found for measuring the sense
of presence considering display context [58].

Finally, we find significant differences in the mean GSR
for all the three tasks with driving set (4-3, 5-3 and 5-4), and
in the mean GSR between the keyboard and the driving set
settings. Within the driving set setting, there exist significant
differences in the mean GSR for different configurations, i.e.,
single monitor, triple monitor and VR headset. Overall, the
results show that there are significant differences in GSR
considering most of the tasks in the study.

Afterward, the association between user characteristics and
the mean GSR was evaluated using an odds ratio analysis [59].
The results are summarised in Table III. According to the
analysis, it was observed that female participants are more
likely to have higher mean GSR than male participants. People
who wear glasses are more likely to have lower mean GSR
than people who do not wear glasses. People who feel that
devices affect driving performance are more likely to have
lower mean GSR. People who can see everything clearly
through the VR headset are more likely to have higher mean
GSR. People who have experience using a driving simulator
are more likely to have lower mean GSR. Overall, we found
significant differences considering mean GSR and six user
characteristics separately as shown in Table III. It shows that
GSR is a good indicator to differentiate between different driv-
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TABLE IV: Classification result based on simulator configu-
rations

Name of the configurations
Classification

Accuracy

Keyboard-Single Monitor (KS) 0.636

Keyboard-Triple Monitor (KT) 0.809

Driving Set-Single Monitor (DS) 0.873

Driving Set-Triple Monitor (DT) 0.900

Driving Set-Headset VR (DH) 0.773

ing stresses levels when considering user characteristics such
as demographics, previous experiences and user perceptions.

In addition, classification results for all 5 different con-
figurations using all features extracted from the signals are
shown in Table IV. The value in the table is the prediction
accuracy between normal and emergency driving for each
class. Here classification accuracy is the indication of strong
impact by the configuration setups on the GSR readings.
As verisimilitude increases participants’ engagement with the
simulator will increase. So, the classifier indicates the degree
of engagement in different setups. The table shows that the
prediction accuracies of KS and KT are lower, being 64%
and 81% respectively where the controller for the simulator is
only a keyboard. For a driving simulator this is very basic and
there is little realism in a keyboard to control a car. When we
replace the keyboard by a driving set with a force-feedback
steering wheel, gear shifter, brake and accelerator the accuracy
increases for DS and DT to 87% and 90% respectively. This
is also supported in [60] where a driving video game was
played with different controllers as an independent variable.
Their results supported that a driving wheel controller being
perceived as more natural than keyboard, gamepad, or joystick
controllers.

We should mention that the VR headset shows a prediction
accuracy of 77% (see Table IV). We suggest that the VR
headset is not ‘real’ compared to driving simulator in all ways,
as the participants could not see their own hands or their
own controlling device in the simulator, which may have had
effects on their perception of verisimilitude and hence on the
GSR signals of participants. Thus, we propose a controller
verisimilitude model, excluding DH, as shown in Figure 4.
It represents participants’ spatial presence considering the
position of real-time simulator configurations. Please note that
the figure is not drawn to scale.

Our two dimensional model suggests that there is possibly
some combined effect of the control device and the degree
of view context, and also shows that the control device is
substantially more important as the percent difference is very
small (87% to 90%) in the two settings using the steering
set. Our results suggests that when a virtual reality headset
is used, the verisimilitude of the simulator is lacking when
compared to the monitor display, and showing 77% which is
a little above the keyboard-single monitor configuration but
below all other configurations. Although VR is supposed to

Control Device
Keyboard Driving Set

M
o
n
it

o
r

O
n

e
T

h
re

e KT

KS

DT

DS

90%

87%

81%

64%

Verisimilitude

Fig. 4: A two dimensional controller verisimilitude model
(positions are not drawn to scale; KS = Keyboard-Single
Monitor; KT = Keyboard-Triple Monitor; DS = Driving Set-
Single Monitor; DT = Driving Set-Triple Monitor).

be the most immersive environment in gaming contexts, in
a driving simulator it lacks some verisimilitude due to the
participants’ feeling of discomfort and lack of visible arms.
The literature suggests that the negative impact of discomfort
reduces the immersion effect of VR [61]. Other researcher
also supports this claim that head mounted display elicit more
simulation sickness than standard desktop displays [33].

V. CONCLUSIONS

The current study sought to investigate the relationship be-
tween drivers’ GSR signals and response to different verisimil-
itude levels of simple driving simulators.

Participants’ GSR signals are captured at 5 different lev-
els of verisimilitude of simulator. Simple driving simulation
environments are mainly used by researchers, particularly
psychology and human-computer interaction (HCI) researchers
to study drivers’ behaviour and mental states in different con-
ditions. However, whether the GSR signal aroused by simple
simulation environments is close to real driving environment
or not remains a question. Also research in dangerous and
emergency driving situation always remains out of scope of
real experiment as the research ethics never permit this kind
of experiment, driving simulators play a significant role in
research based on driving in emergencies.

Our experiment with 23 participants undertaking a series
of driving tasks using simulator setups with different level of
verisimilitude attempted to answer this question. Participants’
GSR data was collected and analyzed. Both statistical method
and neural network classification approaches were used. The
significance test analyzed the relation between the mean value
of each GSR signal and the verisimilitude level of simulator.
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The classification approach focused on extracted features and
analyzes all participants together as whole.

Driving in emergency situations is explicitly believed to be
more stressful than driving in normal situations. However, both
statistical and classification results show that in emergency
situations, the verisimilitude of the simulator has less influence
on GSR signals, as compared to normal driving situations.
We explain this as the stress in emergency situations is much
stronger than the effect on GSR readings due to change of
configuration setups i.e. verisimilitude. This implies that sim-
ple driving simulators can be used for human factor research
involving emergency situations where real life experiments are
ethically not permitted. Also, we found that the differences
of controllers affect the GSR signal more strongly than the
visible context. The VR headset setting also has a significant
influence, however, it is not easy to place with the other four
configurations, in our future work we will investigate further.
Also we will investigate some other physiological signals such
as blood volume pulse, heart rate, pupillary measures, and
we will also increase the number of simulator configurations,
by for example including the body of a car and use a wider
range of labels for different kinds of emergency situations.
In our future work, we will increase the size of the data set,
although twenty or more participants are considered as enough
in research based on physiological signals [62].
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